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Why tie or overload?

●   Complex objects look like simple variables

●   Hide details from users

●   More work for you, less work for your users

●   Sometimes a double edged sword



Tieing objects



What you can tie



What you can tie

●   Just about any variable type



What you can tie

●   Just about any variable type
◆   Scalars, Arrays, Hashes, Filehandles
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Using tie

●   Tie objects to a variable using 
tie

●   Basic tie syntax
tie VARIABLE, CLASS, OPTIONS

●   Options vary according to class used
tie $number, 'Tie::Scalar::Timeout', VALUE => 10, 
                                     EXPIRES => '+1h';
tie @file, 'Tie::File', 'somefile,txt';
tie %db, 'SDBM_File', 'db_name', O_RDWR|O_CREAT, 0666;
tie *FILE, 'Tie::Handle::Scalar', \$some_scalar;

●   Program can now use variables as if they were "normal"

●   All the clever stuff is hidden beneath the surface
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The clever stuff

●   A class that can be used in a tie is a normal Perl class that 
obeys some special rules

●   These rules define the names of method names that must 
exist in the class

●   For example, a tied scalar class must contain methods called
◆   TIESCALAR - called when variable is tied to the class
◆   STORE - called when variable value is set
◆   FETCH - called when variable value is retrieved
◆   UNTIE - called when variable is untied
◆   DESTROY - called when the variable is destroyed

●   You can always get a reference to the underlying object by 
calling tied
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The clever stuff (cont)

●   So, this code
tie $scalar, 'Some::Tie::Class', $some, $options;
$scalar = 'Foo';
print $scalar

●   Is converted by Perl to this (sort of!)
tied($var) = Some::Tie::Class->TIESCALAR($some, $options);
tied($var)->STORE('Foo');
print tied($var)->FETCH;



A simple tied scalar
package Tie::Scalar::Countdown;

sub TIESCALAR {
  my ($class, $start) = @_;

  return bless \$start, $class;
}

sub FETCH {
  my $self = shift;

  return $$self--;
}

sub STORE {
  my $self = shift;

  return $$self = shift;
}

1;



Testing Tie::Scalar::Countdown
#!/usr/bin/perl

use strict;
use warnings;
$|++;

use Tie::Scalar::Countdown;

my $count;
tie $count, 'Tie::Scalar::Countdown', 10
  or die $!;

for (1 .. 5) {
  print "$count\n";
}

$count = 100;

for (1 .. 5) {
  print "$count\n";
}



Tieing other variable types



Tieing other variable types

●   Other variable types work in exactly the same way



Tieing other variable types

●   Other variable types work in exactly the same way

●   Each has it's own set of methods that need to be defined



Tieing other variable types

●   Other variable types work in exactly the same way

●   Each has it's own set of methods that need to be defined

●   Array



Tieing other variable types

●   Other variable types work in exactly the same way

●   Each has it's own set of methods that need to be defined

●   Array
◆   TIEARRAY, FETCH, STORE, FETCHSIZE, STORESIZE, POP, 

PUSH,  SHIFT, UNSHIFT, SPLICE, DELETE, EXISTS, 
EXTEND,UNTIE and DESTROY



Tieing other variable types

●   Other variable types work in exactly the same way

●   Each has it's own set of methods that need to be defined

●   Array
◆   TIEARRAY, FETCH, STORE, FETCHSIZE, STORESIZE, POP, 

PUSH,  SHIFT, UNSHIFT, SPLICE, DELETE, EXISTS, 
EXTEND,UNTIE and DESTROY

●   Hash



Tieing other variable types

●   Other variable types work in exactly the same way

●   Each has it's own set of methods that need to be defined

●   Array
◆   TIEARRAY, FETCH, STORE, FETCHSIZE, STORESIZE, POP, 

PUSH,  SHIFT, UNSHIFT, SPLICE, DELETE, EXISTS, 
EXTEND,UNTIE and DESTROY

●   Hash
◆   TIEHASH, FETCH, STORE, EXISTS, DELETE, CLEAR, 

FIRSTKEY, NEXTKEY, UNTIE, DESTROY



Tieing other variable types

●   Other variable types work in exactly the same way

●   Each has it's own set of methods that need to be defined

●   Array
◆   TIEARRAY, FETCH, STORE, FETCHSIZE, STORESIZE, POP, 

PUSH,  SHIFT, UNSHIFT, SPLICE, DELETE, EXISTS, 
EXTEND,UNTIE and DESTROY

●   Hash
◆   TIEHASH, FETCH, STORE, EXISTS, DELETE, CLEAR, 

FIRSTKEY, NEXTKEY, UNTIE, DESTROY

●   Filehandle



Tieing other variable types

●   Other variable types work in exactly the same way

●   Each has it's own set of methods that need to be defined

●   Array
◆   TIEARRAY, FETCH, STORE, FETCHSIZE, STORESIZE, POP, 

PUSH,  SHIFT, UNSHIFT, SPLICE, DELETE, EXISTS, 
EXTEND,UNTIE and DESTROY

●   Hash
◆   TIEHASH, FETCH, STORE, EXISTS, DELETE, CLEAR, 

FIRSTKEY, NEXTKEY, UNTIE, DESTROY

●   Filehandle
◆   TIEHANDLE, PRINT, PRINTF, WRITE, READLINE, GETC, READ, 

CLOSE, UNTIE, DESTROY, BINMODE, OPEN, EOF, FILENO, 
SEEK,  TELL



Tieing other variable types

●   Other variable types work in exactly the same way

●   Each has it's own set of methods that need to be defined

●   Array
◆   TIEARRAY, FETCH, STORE, FETCHSIZE, STORESIZE, POP, 

PUSH,  SHIFT, UNSHIFT, SPLICE, DELETE, EXISTS, 
EXTEND,UNTIE and DESTROY

●   Hash
◆   TIEHASH, FETCH, STORE, EXISTS, DELETE, CLEAR, 

FIRSTKEY, NEXTKEY, UNTIE, DESTROY

●   Filehandle
◆   TIEHANDLE, PRINT, PRINTF, WRITE, READLINE, GETC, READ, 

CLOSE, UNTIE, DESTROY, BINMODE, OPEN, EOF, FILENO, 
SEEK,  TELL

●   See "perldoc pertie" for details of usage and parameters
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Making life easier for yourself

●   Most variable types have a lot of methods to implement

●   You can make life easier for yourself by inheriting from the 
Tie::StdFoo modules

●   These modules implement tied objects which have the 
standard behaviour

●   You can inherit from them and only change the behaviour that 
you want changed
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tie $scalar, 'Tie::StdScalar';
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Tie::Std::Hash example

●   Using Tie::StdHash
#!/usr/bin/perl

use strict;
use warnings;

use Tie::Scalar;

my $scalar;
tie $scalar, 'Tie::StdScalar';

$scalar = 10;
print $scalar;

●   (Notice that the package Tie::StdScalar is in the module 
Tie::Scalar.)

●   This isn't very useful, we are just doing what we can already 
do with real scalars

●   It's more useful when we use Tie::StdFoo as a base class
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  return $$self--;
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1;
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●   We can reimplement Tie::Scalar::Countdown using 
Tie::StdScalar

package Tie::Scalar::Countdown;

use Tie::Scalar;
our @ISA = 'Tie::StdScalar';

sub TIESCALAR {
  my ($class, $start) = @_;

  return bless \$start, $class;
}

sub FETCH {
  my $self = shift;

  return $$self--;
}

1;

●   In our previous version, the STORE method wasn't doing 
anything non-standard

●   Now we just inherit the method from Tie::Std::Scalar
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Tie::StdHash Example - Tie::Hash::FixedKeys

●   Tie::Hash::FixedKeys allows you to define hashes with a fixed 
set of keys.

●   Most of the functionality is identical to a standard hash

●   Just need to override methods that can alter the keys
package Tie::Hash::FixedKeys; 

use strict;
use warnings;

use Carp;
use Tie::Hash;
our @ISA = 'Tie::StdHash';

sub TIEHASH {
  my $class = shift;

  my %hash;
  @hash{@_} = (undef) x @_;

  bless \%hash, $class;
}



Tie::Hash::FixedKeys (cont)
sub STORE {
  my ($self, $key, $val) = @_;

  unless (exists $self->{$key}) {
    croak "invalid key [$key] in hash\n";
    return;
  }
  $self->{$key} = $val;
}

sub DELETE {
  my ($self, $key) = @_;

  return unless exists $self->{$key};

  my $ret = $self->{$key};

  $self->{$key} = undef;

  return $ret;
}



Tie::Hash::FixedKeys (cont)
sub CLEAR {
  my $self = shift;

  $self->{$_} = undef foreach keys %$self;
}

1;



Tie::Hash::FixedKeys (cont)
sub CLEAR {
  my $self = shift;

  $self->{$_} = undef foreach keys %$self;
}

1;

●   Use it like this:
use Tie::Hash::FixedKeys;
                                                                                
my %hash;
tie %hash, 'Tie::Hash::FixedKeys', 'foo', 'bar', 'baz';
                                                                                
$hash{foo} = 'Foo';
$hash{qux} = 'Qux'; # Error!
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Another example

●   Using methods like this it's easy to create variables that 
expand or extend standard Perl behaviour in interesting ways

package Tie::Hash::Cannabinol; 

use strict;
use warnings;
use Tie::Hash;
our @ISA = 'Tie::StdHash';

sub STORE {
  my ($self, $key, $val) = @_;
  return if rand > .75;
  $self->{$key} = $val;
}

sub FETCH {
  my ($self, $key) = @_;
  return if rand > .75;
  return $self->{(keys %$self)[rand keys %$self]};
}

sub EXISTS { return rand > .5; }

1;
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Making life easier for your users

●   Whilst this hides most of the clever stuff from the users, they 
still have to call tie

●   This can potentially be confusing

●   Attribute::Handlers makes it easier for them

●   Instead of writing
my %var;
tie %var, 'Tie::Foo', @some_options;

●   They can now use
my %var : Foo (@some_options);

●   Where "Foo" is an attribute that you choose to represent your 
class
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Using Attribute::Handlers

●   To enable this, add this to your module
use Attribute::Handlers
    autotie => { "__CALLER__::Foo" => __PACKAGE__ };

●   For example, Tie::Hash::FixedKeys uses
use Attribute::Handlers 
    autotie => { "__CALLER__::FixedKeys" => __PACKAGE__ };

●   And you use it like this
my %hash : FixedKeys('foo', 'bar', 'baz');

●   The attribute name doesn't have to have any connection to the 
class name

use Attribute::Handlers 
    autotie => { "__CALLER__::Stoned" => __PACKAGE__ };
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Another example - External data

●   Another good use for tied variables is to hide complex access 
to external data.

●   For example the Met Office has five day weather forecasts for 
various UK cities

●   It would be nice to be able to access this simply
#!/usr/bin/perl

use strict;
use warnings;

use POSIX 'strftime';
use Tie::Array::UKWeather;

my @forecast : Forecast('London');

my $day = time;
foreach (@forecast) {
  print strftime('%a %d %b', localtime $day);
  print ": Max $_->{max}, Min $_->{min}\n";
  $day += 24*60*60;
}



Tie::Array::UKWeather
package Tie::Array::UKWeather;

use strict;
use warnings;

use Carp;
use LWP::Simple;
use Tie::Array;
use Attribute::Handlers
    autotie => { "__CALLER__::Forecast" => __PACKAGE__ };
our @ISA = 'Tie::StdArray';

my $url = 
  'http://www.met-office.gov.uk/weather/europe/uk/cities';

my %city = (london => 'london.html');



Tie::Array::UKWeather (cont)
sub TIEARRAY {
  my ($class, $city) = @_;

  croak "Unknown city $city" unless exists $city{lc $city};

  my $page = get "$url/$city{lc $city}";

  my @temps = $page =~ /(\d+)&deg;C/g; # Please excuse quick hack!

  my @forecast;

  while (my @day = splice @temps, 0, 2) {
    push @forecast, { max => $day[0],
		      min => $day[1] };
  }

  return bless \@forecast, $class;
}

1;



Tie::Array::UKWeather (cont)
sub TIEARRAY {
  my ($class, $city) = @_;

  croak "Unknown city $city" unless exists $city{lc $city};

  my $page = get "$url/$city{lc $city}";

  my @temps = $page =~ /(\d+)&deg;C/g; # Please excuse quick hack!

  my @forecast;

  while (my @day = splice @temps, 0, 2) {
    push @forecast, { max => $day[0],
		      min => $day[1] };
  }

  return bless \@forecast, $class;
}

1;

●   You would probably want to make this array read-only



Tie::Array::UKWeather (cont)
sub TIEARRAY {
  my ($class, $city) = @_;

  croak "Unknown city $city" unless exists $city{lc $city};

  my $page = get "$url/$city{lc $city}";

  my @temps = $page =~ /(\d+)&deg;C/g; # Please excuse quick hack!

  my @forecast;

  while (my @day = splice @temps, 0, 2) {
    push @forecast, { max => $day[0],
		      min => $day[1] };
  }

  return bless \@forecast, $class;
}

1;

●   You would probably want to make this array read-only

●   Find all the methods that change the array and make them 
no-ops
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More information

●   perldoc perltie

●   perldoc -f tie

●   perldoc -f tied
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What is overloading

●   Most languages that support OO have a feature that they call 
"overloading"

●    This is usually method overloading

●   Multiple methods with the same name but different prototypes
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Java Example
public Fraction(integer num,
                integer den);
public Fraction(Fraction F);
public Fraction();

●   Each method takes a different set of parameters, but they all 
return a Fraction object

●   In Perl this is trivial (we'll see an example later)
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What is operator overloading?

●   Imagine you have a class that models fractions
my $half
  = Number::Fraction->new(1, 2);
my $quarter 
  = Number::Fraction->new(1, 4);
my $three_quarters = $half;
$three_quarters->add($quarter);

●   Nasty isn't it

●   Also error prone

●   Can you spot the bug?
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A better way

●   Wouldn't this be nicer?
my $half
  = Number::Fraction->new(1, 2);
my $quarter 
  = Number::Fraction->new(1, 4);
my $three_quarters 
  = $half + $quarter;
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●   Or even this
my $half = '1/2';
my $quarter = '1/4';
my $three_quarters 
  = $half + $quarter;



An even better way

●   Or even this
my $half = '1/2';
my $quarter = '1/4';
my $three_quarters 
  = $half + $quarter;

●   This is what operator overloading gives us
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A Closer Look at Number::Fraction

●   The constructor is an example of method overloading

●   In Perl we only need one method
sub new {
  my $class = shift;
  my $self;
  if (@_ >= 2) {
    return if $_[0] =~ /\D/ or $_[1] =~ /\D/;
    $self->{num} = $_[0];
    $self->{den} = $_[1];
  } elsif (@_ == 1) {
    if (ref $_[0]) {
      if (UNIVERSAL::isa($_[0], $class) {
        return $class->new($_[0]->{num}, 
                           $_[0]->{den});
      } else {
        croak "Can't make a $class from a ", ref $_[0];
      }
    } else {
      return unless $_[0] =~ m|^(\d+)/(\d+)|;

      $self->{num} = $1;
      $self->{den} = $2;
    }



Number::Fraction constructor (cont)
  } elsif (!@_) {
    $self->{num} = 0;
    $self->{den} = 1;
  }

  bless $self, $class;
  $self->normalise;
  return $self;
}



Using Number::Fraction
$half = Number::Fraction->new(1, 2);

$quarter = Number::Fraction->new('1/4');

$other_half = Number::Fraction::new($half);

$one = Number::Fraction->new;



Number::Fraction::add
sub add {
  my ($self, $delta) = @_;

  if (ref $delta) {
    if (UNIVERSAL::isa($delta, ref $self)) {
      $self->{num} = $self->{num}  * $delta->{den} 
                   + $delta->{num} * $self->{den};
      $self->{den} = $self->{den}  * $delta->{den};
    } else {
      croak "Can't add a ", ref $delta, " to a ", ref $self;
    }
  } else {
    if ($delta =~ m|(\d+)/(\d+)|) {
      $self->add(Number::Fraction->new($1, $2));
    } elsif ($delta !~ /\D/) {
      $self->add(Number::Fraction->new($delta, 1));
    } else {
      croak "Can't add $delta to a ", ref $self;
    }
  }
  $self->normalise;
}
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Using overload.pm
use overload '+' => 'add';

●   Allows you to write code like
$three_quarters = $half + $quarter;

●   Or rather, it almost does

●   We need to do some work on add method first
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The problem with add

●   Our current implementation of add works on the current object

●   $x + $y is reordered to $x->add($y)

●   $x is the current object

●   In code like $z = $x + $y the value of $x shouldn't change

●   Need to rewrite add so it returns a new object



Number::Fraction::add (version 2)
sub add {
  my ($l, $r) = @_;
  if (ref $r) {
    if (UNIVERSAL::isa($r, ref $l) {
      return 
        Number::Fraction->new($l->{num} * $r->{den} 
                            + $r->{num} * $l->{den},
                              $l->{den} * $r->{den})
    } else {
      ...
    }
  else {
    ...
  }
}
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Other Problems

●   Our object now handles code like
$half = $quarter + '1/4';

●   But what about
$half = '1/4' + $quarter;

●   Perl swaps the order of the operators and passes a flag telling 
you that it has happened.



Reversed operands
sub add {
  my ($l, $r, $rev) = @_;
  ...
}



Reversed operands
sub add {
  my ($l, $r, $rev) = @_;
  ...
}

●   This makes no difference for commutative operators (e.g. + 
and *), but makes a difference for non-commutative operators 
(e.g. - and /)
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Overloadable operators

●   Arithmetic: +, +=, -, -=, *, *=, /, /=, %, %=, **, **=, <<, <<=, >>, 
>>=, x, x=, ., .=

●   Comparison: <, <=, >, >=, ==, !=, <=>, lt, le, gt, ge, eq, ne, cmp 
Bit: &, ^, |, neg, !, ~

●   Increment/Decrement: ++, --

●   ...and many others (see perldoc overload)
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Magical Autogeneration

●   That's a lot of operators!

●   You don't need to define all of these operations

●   Perl can autogenerate many of them

●   ++ can be derived from +

●   += can be derived from +

●   - (unary) can be derived from - (binary)

●   All numeric comparisons can be derived from <=>

●   All string comparisons can be derived from cmp
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Controlling Autogeneration

●   Two special "operators" give finer control over autogeneration
◆   nomethod - called if no other function defined
◆   fallback - controls what autogeneration does

use overload
  '-' => 'subtract',
  fallback => 0,
  nomethod => sub { 
    croak "illegal operator $_[3]" 
  };
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Values for fallback

●   undef - autogenerate methods (die if method can't be 
generated)

●   1 - autogenerate method (if method can't be generated revert 
to standard Perl behaviour)

●   0 - don't autogenerate methods
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Type Conversion

●   Three special operators allow for type conversions

●   q{""} converts to a string (you'll sometimes see this as "\"\"")

●   0+ converts to a number

●   bool converts to a boolean value



Type Conversion Example
use overload
  q{""} => 'to_string',
  '0+'  => 'to_num';

sub to_string {
  my $self = shift;
  return "$_->{num}/$_->{den}";
}

sub to_num {
  my $self = shift;
  return $_{num}/$_->{den};
}
my $half = 
  Number::Fraction->new(1, 2);

print $half;  # prints 1/2
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●   Type conversion and fallback can be used together to prevent 
you having to define any comparison operators

use overload
  '0+' => 'to_num',
  fallback => 1;



Type Conversion and fallback

●   Type conversion and fallback can be used together to prevent 
you having to define any comparison operators

use overload
  '0+' => 'to_num',
  fallback => 1;

●   Now any use of numeric comparison operators will call to_num
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Handling Constants

●   The last point at which we still need to refer to 
Number::Fraction is when we create a fraction

●   We can avoid that too using overload::constant

my %_const_handlers = 
  (q => sub { 
          return __PACKAGE__->new($_[0]) || $_[1] 
        });

sub import {
  overload::constant %_const_handlers 
    if $_[1] eq ':constants';
}

sub unimport {
  overload::remove_constant(q => undef);
}
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Defining Constant Handlers

●   Define a constant handler hash

●   Keys are integer, float, binary, q or qr

●   Values are subroutine references

●   Subroutine is passed three arguments
◆   Original string representation of constant
◆   How Perl wants to interpret the constant
◆   (for q and qr) Describes how string is being used (q, qq, tr, s)

●   Install during import subroutine



Using Constant Handlers
use Number::Fraction ':constants';

my $half = '1/2';
print ref $half; # prints Number::Fraction

my $x = '1/4' + '1/3';
print $x; # prints 7/12

$x += '1/12';
print $x; # prints 2/3
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More information

●   perldoc overload



Any Questions?
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