
Tieing and Overloading Objects in Perl

Dave Cross
Magnum Solutions

mailto:dave@dave.org.uk
http://mag-sol.com/talks/toop/

What We Will Cover

What We Will Cover

● Why tie or overload?

What We Will Cover

● Why tie or overload?

● Tieing objects

What We Will Cover

● Why tie or overload?

● Tieing objects
◆ What you can tie

What We Will Cover

● Why tie or overload?

● Tieing objects
◆ What you can tie
◆ Using tie

What We Will Cover

● Why tie or overload?

● Tieing objects
◆ What you can tie
◆ Using tie
◆ Being lazy (using Tie::StdFoo)

What We Will Cover

● Why tie or overload?

● Tieing objects
◆ What you can tie
◆ Using tie
◆ Being lazy (using Tie::StdFoo)
◆ Easier tie interfaces (Attribute::Handlers)

What We Will Cover

● Why tie or overload?

● Tieing objects
◆ What you can tie
◆ Using tie
◆ Being lazy (using Tie::StdFoo)
◆ Easier tie interfaces (Attribute::Handlers)
◆ Extended examples

What We Will Cover

● Why tie or overload?

● Tieing objects
◆ What you can tie
◆ Using tie
◆ Being lazy (using Tie::StdFoo)
◆ Easier tie interfaces (Attribute::Handlers)
◆ Extended examples

● Overloading objects

What We Will Cover

● Why tie or overload?

● Tieing objects
◆ What you can tie
◆ Using tie
◆ Being lazy (using Tie::StdFoo)
◆ Easier tie interfaces (Attribute::Handlers)
◆ Extended examples

● Overloading objects
◆ Overloaded methods vs overloaded operators

What We Will Cover

● Why tie or overload?

● Tieing objects
◆ What you can tie
◆ Using tie
◆ Being lazy (using Tie::StdFoo)
◆ Easier tie interfaces (Attribute::Handlers)
◆ Extended examples

● Overloading objects
◆ Overloaded methods vs overloaded operators
◆ Overloading operators

What We Will Cover

● Why tie or overload?

● Tieing objects
◆ What you can tie
◆ Using tie
◆ Being lazy (using Tie::StdFoo)
◆ Easier tie interfaces (Attribute::Handlers)
◆ Extended examples

● Overloading objects
◆ Overloaded methods vs overloaded operators
◆ Overloading operators
◆ Stringification and numerifcation

What We Will Cover

● Why tie or overload?

● Tieing objects
◆ What you can tie
◆ Using tie
◆ Being lazy (using Tie::StdFoo)
◆ Easier tie interfaces (Attribute::Handlers)
◆ Extended examples

● Overloading objects
◆ Overloaded methods vs overloaded operators
◆ Overloading operators
◆ Stringification and numerifcation
◆ Copy constructors

What We Will Cover

● Why tie or overload?

● Tieing objects
◆ What you can tie
◆ Using tie
◆ Being lazy (using Tie::StdFoo)
◆ Easier tie interfaces (Attribute::Handlers)
◆ Extended examples

● Overloading objects
◆ Overloaded methods vs overloaded operators
◆ Overloading operators
◆ Stringification and numerifcation
◆ Copy constructors
◆ Overloading constants

What We Will Cover

● Why tie or overload?

● Tieing objects
◆ What you can tie
◆ Using tie
◆ Being lazy (using Tie::StdFoo)
◆ Easier tie interfaces (Attribute::Handlers)
◆ Extended examples

● Overloading objects
◆ Overloaded methods vs overloaded operators
◆ Overloading operators
◆ Stringification and numerifcation
◆ Copy constructors
◆ Overloading constants
◆ Extended examples

Why tie or overload?

Why tie or overload?

● Complex objects look like simple variables

Why tie or overload?

● Complex objects look like simple variables

● Hide details from users

Why tie or overload?

● Complex objects look like simple variables

● Hide details from users

● More work for you, less work for your users

Why tie or overload?

● Complex objects look like simple variables

● Hide details from users

● More work for you, less work for your users

● Sometimes a double edged sword

Tieing objects

What you can tie

What you can tie

● Just about any variable type

What you can tie

● Just about any variable type
◆ Scalars, Arrays, Hashes, Filehandles

Using tie

Using tie

● Tie objects to a variable using
tie

Using tie

● Tie objects to a variable using
tie

● Basic tie syntax
tie VARIABLE, CLASS, OPTIONS

Using tie

● Tie objects to a variable using
tie

● Basic tie syntax
tie VARIABLE, CLASS, OPTIONS

● Options vary according to class used
tie $number, 'Tie::Scalar::Timeout', VALUE => 10,
 EXPIRES => '+1h';
tie @file, 'Tie::File', 'somefile,txt';
tie %db, 'SDBM_File', 'db_name', O_RDWR|O_CREAT, 0666;
tie *FILE, 'Tie::Handle::Scalar', \$some_scalar;

Using tie

● Tie objects to a variable using
tie

● Basic tie syntax
tie VARIABLE, CLASS, OPTIONS

● Options vary according to class used
tie $number, 'Tie::Scalar::Timeout', VALUE => 10,
 EXPIRES => '+1h';
tie @file, 'Tie::File', 'somefile,txt';
tie %db, 'SDBM_File', 'db_name', O_RDWR|O_CREAT, 0666;
tie *FILE, 'Tie::Handle::Scalar', \$some_scalar;

● Program can now use variables as if they were "normal"

Using tie

● Tie objects to a variable using
tie

● Basic tie syntax
tie VARIABLE, CLASS, OPTIONS

● Options vary according to class used
tie $number, 'Tie::Scalar::Timeout', VALUE => 10,
 EXPIRES => '+1h';
tie @file, 'Tie::File', 'somefile,txt';
tie %db, 'SDBM_File', 'db_name', O_RDWR|O_CREAT, 0666;
tie *FILE, 'Tie::Handle::Scalar', \$some_scalar;

● Program can now use variables as if they were "normal"

● All the clever stuff is hidden beneath the surface

The clever stuff

The clever stuff

● A class that can be used in a tie is a normal Perl class that
obeys some special rules

The clever stuff

● A class that can be used in a tie is a normal Perl class that
obeys some special rules

● These rules define the names of method names that must
exist in the class

The clever stuff

● A class that can be used in a tie is a normal Perl class that
obeys some special rules

● These rules define the names of method names that must
exist in the class

● For example, a tied scalar class must contain methods called

The clever stuff

● A class that can be used in a tie is a normal Perl class that
obeys some special rules

● These rules define the names of method names that must
exist in the class

● For example, a tied scalar class must contain methods called
◆ TIESCALAR - called when variable is tied to the class

The clever stuff

● A class that can be used in a tie is a normal Perl class that
obeys some special rules

● These rules define the names of method names that must
exist in the class

● For example, a tied scalar class must contain methods called
◆ TIESCALAR - called when variable is tied to the class
◆ STORE - called when variable value is set

The clever stuff

● A class that can be used in a tie is a normal Perl class that
obeys some special rules

● These rules define the names of method names that must
exist in the class

● For example, a tied scalar class must contain methods called
◆ TIESCALAR - called when variable is tied to the class
◆ STORE - called when variable value is set
◆ FETCH - called when variable value is retrieved

The clever stuff

● A class that can be used in a tie is a normal Perl class that
obeys some special rules

● These rules define the names of method names that must
exist in the class

● For example, a tied scalar class must contain methods called
◆ TIESCALAR - called when variable is tied to the class
◆ STORE - called when variable value is set
◆ FETCH - called when variable value is retrieved
◆ UNTIE - called when variable is untied

The clever stuff

● A class that can be used in a tie is a normal Perl class that
obeys some special rules

● These rules define the names of method names that must
exist in the class

● For example, a tied scalar class must contain methods called
◆ TIESCALAR - called when variable is tied to the class
◆ STORE - called when variable value is set
◆ FETCH - called when variable value is retrieved
◆ UNTIE - called when variable is untied
◆ DESTROY - called when the variable is destroyed

The clever stuff

● A class that can be used in a tie is a normal Perl class that
obeys some special rules

● These rules define the names of method names that must
exist in the class

● For example, a tied scalar class must contain methods called
◆ TIESCALAR - called when variable is tied to the class
◆ STORE - called when variable value is set
◆ FETCH - called when variable value is retrieved
◆ UNTIE - called when variable is untied
◆ DESTROY - called when the variable is destroyed

● You can always get a reference to the underlying object by
calling tied

The clever stuff (cont)

The clever stuff (cont)

● So, this code
tie $scalar, 'Some::Tie::Class', $some, $options;
$scalar = 'Foo';
print $scalar

The clever stuff (cont)

● So, this code
tie $scalar, 'Some::Tie::Class', $some, $options;
$scalar = 'Foo';
print $scalar

● Is converted by Perl to this (sort of!)
tied($var) = Some::Tie::Class->TIESCALAR($some, $options);
tied($var)->STORE('Foo');
print tied($var)->FETCH;

A simple tied scalar
package Tie::Scalar::Countdown;

sub TIESCALAR {
 my ($class, $start) = @_;

 return bless \$start, $class;
}

sub FETCH {
 my $self = shift;

 return $$self--;
}

sub STORE {
 my $self = shift;

 return $$self = shift;
}

1;

Testing Tie::Scalar::Countdown
#!/usr/bin/perl

use strict;
use warnings;
$|++;

use Tie::Scalar::Countdown;

my $count;
tie $count, 'Tie::Scalar::Countdown', 10
 or die $!;

for (1 .. 5) {
 print "$count\n";
}

$count = 100;

for (1 .. 5) {
 print "$count\n";
}

Tieing other variable types

Tieing other variable types

● Other variable types work in exactly the same way

Tieing other variable types

● Other variable types work in exactly the same way

● Each has it's own set of methods that need to be defined

Tieing other variable types

● Other variable types work in exactly the same way

● Each has it's own set of methods that need to be defined

● Array

Tieing other variable types

● Other variable types work in exactly the same way

● Each has it's own set of methods that need to be defined

● Array
◆ TIEARRAY, FETCH, STORE, FETCHSIZE, STORESIZE, POP,

PUSH, SHIFT, UNSHIFT, SPLICE, DELETE, EXISTS,
EXTEND,UNTIE and DESTROY

Tieing other variable types

● Other variable types work in exactly the same way

● Each has it's own set of methods that need to be defined

● Array
◆ TIEARRAY, FETCH, STORE, FETCHSIZE, STORESIZE, POP,

PUSH, SHIFT, UNSHIFT, SPLICE, DELETE, EXISTS,
EXTEND,UNTIE and DESTROY

● Hash

Tieing other variable types

● Other variable types work in exactly the same way

● Each has it's own set of methods that need to be defined

● Array
◆ TIEARRAY, FETCH, STORE, FETCHSIZE, STORESIZE, POP,

PUSH, SHIFT, UNSHIFT, SPLICE, DELETE, EXISTS,
EXTEND,UNTIE and DESTROY

● Hash
◆ TIEHASH, FETCH, STORE, EXISTS, DELETE, CLEAR,

FIRSTKEY, NEXTKEY, UNTIE, DESTROY

Tieing other variable types

● Other variable types work in exactly the same way

● Each has it's own set of methods that need to be defined

● Array
◆ TIEARRAY, FETCH, STORE, FETCHSIZE, STORESIZE, POP,

PUSH, SHIFT, UNSHIFT, SPLICE, DELETE, EXISTS,
EXTEND,UNTIE and DESTROY

● Hash
◆ TIEHASH, FETCH, STORE, EXISTS, DELETE, CLEAR,

FIRSTKEY, NEXTKEY, UNTIE, DESTROY

● Filehandle

Tieing other variable types

● Other variable types work in exactly the same way

● Each has it's own set of methods that need to be defined

● Array
◆ TIEARRAY, FETCH, STORE, FETCHSIZE, STORESIZE, POP,

PUSH, SHIFT, UNSHIFT, SPLICE, DELETE, EXISTS,
EXTEND,UNTIE and DESTROY

● Hash
◆ TIEHASH, FETCH, STORE, EXISTS, DELETE, CLEAR,

FIRSTKEY, NEXTKEY, UNTIE, DESTROY

● Filehandle
◆ TIEHANDLE, PRINT, PRINTF, WRITE, READLINE, GETC, READ,

CLOSE, UNTIE, DESTROY, BINMODE, OPEN, EOF, FILENO,
SEEK, TELL

Tieing other variable types

● Other variable types work in exactly the same way

● Each has it's own set of methods that need to be defined

● Array
◆ TIEARRAY, FETCH, STORE, FETCHSIZE, STORESIZE, POP,

PUSH, SHIFT, UNSHIFT, SPLICE, DELETE, EXISTS,
EXTEND,UNTIE and DESTROY

● Hash
◆ TIEHASH, FETCH, STORE, EXISTS, DELETE, CLEAR,

FIRSTKEY, NEXTKEY, UNTIE, DESTROY

● Filehandle
◆ TIEHANDLE, PRINT, PRINTF, WRITE, READLINE, GETC, READ,

CLOSE, UNTIE, DESTROY, BINMODE, OPEN, EOF, FILENO,
SEEK, TELL

● See "perldoc pertie" for details of usage and parameters

Making life easier for yourself

Making life easier for yourself

● Most variable types have a lot of methods to implement

Making life easier for yourself

● Most variable types have a lot of methods to implement

● You can make life easier for yourself by inheriting from the
Tie::StdFoo modules

Making life easier for yourself

● Most variable types have a lot of methods to implement

● You can make life easier for yourself by inheriting from the
Tie::StdFoo modules

● These modules implement tied objects which have the
standard behaviour

Making life easier for yourself

● Most variable types have a lot of methods to implement

● You can make life easier for yourself by inheriting from the
Tie::StdFoo modules

● These modules implement tied objects which have the
standard behaviour

● You can inherit from them and only change the behaviour that
you want changed

Tie::Std::Hash example

Tie::Std::Hash example

● Using Tie::StdHash
#!/usr/bin/perl

use strict;
use warnings;

use Tie::Scalar;

my $scalar;
tie $scalar, 'Tie::StdScalar';

$scalar = 10;
print $scalar;

Tie::Std::Hash example

● Using Tie::StdHash
#!/usr/bin/perl

use strict;
use warnings;

use Tie::Scalar;

my $scalar;
tie $scalar, 'Tie::StdScalar';

$scalar = 10;
print $scalar;

● (Notice that the package Tie::StdScalar is in the module
Tie::Scalar.)

Tie::Std::Hash example

● Using Tie::StdHash
#!/usr/bin/perl

use strict;
use warnings;

use Tie::Scalar;

my $scalar;
tie $scalar, 'Tie::StdScalar';

$scalar = 10;
print $scalar;

● (Notice that the package Tie::StdScalar is in the module
Tie::Scalar.)

● This isn't very useful, we are just doing what we can already
do with real scalars

Tie::Std::Hash example

● Using Tie::StdHash
#!/usr/bin/perl

use strict;
use warnings;

use Tie::Scalar;

my $scalar;
tie $scalar, 'Tie::StdScalar';

$scalar = 10;
print $scalar;

● (Notice that the package Tie::StdScalar is in the module
Tie::Scalar.)

● This isn't very useful, we are just doing what we can already
do with real scalars

● It's more useful when we use Tie::StdFoo as a base class

Tie::Scalar::Countdown (version 2)

Tie::Scalar::Countdown (version 2)

● We can reimplement Tie::Scalar::Countdown using
Tie::StdScalar

package Tie::Scalar::Countdown;

use Tie::Scalar;
our @ISA = 'Tie::StdScalar';

sub TIESCALAR {
 my ($class, $start) = @_;

 return bless \$start, $class;
}

sub FETCH {
 my $self = shift;

 return $$self--;
}

1;

Tie::Scalar::Countdown (version 2)

● We can reimplement Tie::Scalar::Countdown using
Tie::StdScalar

package Tie::Scalar::Countdown;

use Tie::Scalar;
our @ISA = 'Tie::StdScalar';

sub TIESCALAR {
 my ($class, $start) = @_;

 return bless \$start, $class;
}

sub FETCH {
 my $self = shift;

 return $$self--;
}

1;

● In our previous version, the STORE method wasn't doing
anything non-standard

Tie::Scalar::Countdown (version 2)

● We can reimplement Tie::Scalar::Countdown using
Tie::StdScalar

package Tie::Scalar::Countdown;

use Tie::Scalar;
our @ISA = 'Tie::StdScalar';

sub TIESCALAR {
 my ($class, $start) = @_;

 return bless \$start, $class;
}

sub FETCH {
 my $self = shift;

 return $$self--;
}

1;

● In our previous version, the STORE method wasn't doing
anything non-standard

● Now we just inherit the method from Tie::Std::Scalar

Tie::StdHash Example - Tie::Hash::FixedKeys

Tie::StdHash Example - Tie::Hash::FixedKeys

● Tie::Hash::FixedKeys allows you to define hashes with a fixed
set of keys.

Tie::StdHash Example - Tie::Hash::FixedKeys

● Tie::Hash::FixedKeys allows you to define hashes with a fixed
set of keys.

● Most of the functionality is identical to a standard hash

Tie::StdHash Example - Tie::Hash::FixedKeys

● Tie::Hash::FixedKeys allows you to define hashes with a fixed
set of keys.

● Most of the functionality is identical to a standard hash

● Just need to override methods that can alter the keys
package Tie::Hash::FixedKeys;

use strict;
use warnings;

use Carp;
use Tie::Hash;
our @ISA = 'Tie::StdHash';

sub TIEHASH {
 my $class = shift;

 my %hash;
 @hash{@_} = (undef) x @_;

 bless \%hash, $class;
}

Tie::Hash::FixedKeys (cont)
sub STORE {
 my ($self, $key, $val) = @_;

 unless (exists $self->{$key}) {
 croak "invalid key [$key] in hash\n";
 return;
 }
 $self->{$key} = $val;
}

sub DELETE {
 my ($self, $key) = @_;

 return unless exists $self->{$key};

 my $ret = $self->{$key};

 $self->{$key} = undef;

 return $ret;
}

Tie::Hash::FixedKeys (cont)
sub CLEAR {
 my $self = shift;

 $self->{$_} = undef foreach keys %$self;
}

1;

Tie::Hash::FixedKeys (cont)
sub CLEAR {
 my $self = shift;

 $self->{$_} = undef foreach keys %$self;
}

1;

● Use it like this:
use Tie::Hash::FixedKeys;

my %hash;
tie %hash, 'Tie::Hash::FixedKeys', 'foo', 'bar', 'baz';

$hash{foo} = 'Foo';
$hash{qux} = 'Qux'; # Error!

Another example

Another example

● Using methods like this it's easy to create variables that
expand or extend standard Perl behaviour in interesting ways

package Tie::Hash::Cannabinol;

use strict;
use warnings;
use Tie::Hash;
our @ISA = 'Tie::StdHash';

sub STORE {
 my ($self, $key, $val) = @_;
 return if rand > .75;
 $self->{$key} = $val;
}

sub FETCH {
 my ($self, $key) = @_;
 return if rand > .75;
 return $self->{(keys %$self)[rand keys %$self]};
}

sub EXISTS { return rand > .5; }

1;

Making life easier for your users

Making life easier for your users

● Whilst this hides most of the clever stuff from the users, they
still have to call tie

Making life easier for your users

● Whilst this hides most of the clever stuff from the users, they
still have to call tie

● This can potentially be confusing

Making life easier for your users

● Whilst this hides most of the clever stuff from the users, they
still have to call tie

● This can potentially be confusing

● Attribute::Handlers makes it easier for them

Making life easier for your users

● Whilst this hides most of the clever stuff from the users, they
still have to call tie

● This can potentially be confusing

● Attribute::Handlers makes it easier for them

● Instead of writing
my %var;
tie %var, 'Tie::Foo', @some_options;

Making life easier for your users

● Whilst this hides most of the clever stuff from the users, they
still have to call tie

● This can potentially be confusing

● Attribute::Handlers makes it easier for them

● Instead of writing
my %var;
tie %var, 'Tie::Foo', @some_options;

● They can now use
my %var : Foo (@some_options);

Making life easier for your users

● Whilst this hides most of the clever stuff from the users, they
still have to call tie

● This can potentially be confusing

● Attribute::Handlers makes it easier for them

● Instead of writing
my %var;
tie %var, 'Tie::Foo', @some_options;

● They can now use
my %var : Foo (@some_options);

● Where "Foo" is an attribute that you choose to represent your
class

Using Attribute::Handlers

Using Attribute::Handlers

● To enable this, add this to your module
use Attribute::Handlers
 autotie => { "__CALLER__::Foo" => __PACKAGE__ };

Using Attribute::Handlers

● To enable this, add this to your module
use Attribute::Handlers
 autotie => { "__CALLER__::Foo" => __PACKAGE__ };

● For example, Tie::Hash::FixedKeys uses
use Attribute::Handlers
 autotie => { "__CALLER__::FixedKeys" => __PACKAGE__ };

Using Attribute::Handlers

● To enable this, add this to your module
use Attribute::Handlers
 autotie => { "__CALLER__::Foo" => __PACKAGE__ };

● For example, Tie::Hash::FixedKeys uses
use Attribute::Handlers
 autotie => { "__CALLER__::FixedKeys" => __PACKAGE__ };

● And you use it like this
my %hash : FixedKeys('foo', 'bar', 'baz');

Using Attribute::Handlers

● To enable this, add this to your module
use Attribute::Handlers
 autotie => { "__CALLER__::Foo" => __PACKAGE__ };

● For example, Tie::Hash::FixedKeys uses
use Attribute::Handlers
 autotie => { "__CALLER__::FixedKeys" => __PACKAGE__ };

● And you use it like this
my %hash : FixedKeys('foo', 'bar', 'baz');

● The attribute name doesn't have to have any connection to the
class name

use Attribute::Handlers
 autotie => { "__CALLER__::Stoned" => __PACKAGE__ };

Another example - External data

Another example - External data

● Another good use for tied variables is to hide complex access
to external data.

Another example - External data

● Another good use for tied variables is to hide complex access
to external data.

● For example the Met Office has five day weather forecasts for
various UK cities

Another example - External data

● Another good use for tied variables is to hide complex access
to external data.

● For example the Met Office has five day weather forecasts for
various UK cities

● It would be nice to be able to access this simply
#!/usr/bin/perl

use strict;
use warnings;

use POSIX 'strftime';
use Tie::Array::UKWeather;

my @forecast : Forecast('London');

my $day = time;
foreach (@forecast) {
 print strftime('%a %d %b', localtime $day);
 print ": Max $_->{max}, Min $_->{min}\n";
 $day += 24*60*60;
}

Tie::Array::UKWeather
package Tie::Array::UKWeather;

use strict;
use warnings;

use Carp;
use LWP::Simple;
use Tie::Array;
use Attribute::Handlers
 autotie => { "__CALLER__::Forecast" => __PACKAGE__ };
our @ISA = 'Tie::StdArray';

my $url =
 'http://www.met-office.gov.uk/weather/europe/uk/cities';

my %city = (london => 'london.html');

Tie::Array::UKWeather (cont)
sub TIEARRAY {
 my ($class, $city) = @_;

 croak "Unknown city $city" unless exists $city{lc $city};

 my $page = get "$url/$city{lc $city}";

 my @temps = $page =~ /(\d+)°C/g; # Please excuse quick hack!

 my @forecast;

 while (my @day = splice @temps, 0, 2) {
 push @forecast, { max => $day[0],
		 min => $day[1] };
 }

 return bless \@forecast, $class;
}

1;

Tie::Array::UKWeather (cont)
sub TIEARRAY {
 my ($class, $city) = @_;

 croak "Unknown city $city" unless exists $city{lc $city};

 my $page = get "$url/$city{lc $city}";

 my @temps = $page =~ /(\d+)°C/g; # Please excuse quick hack!

 my @forecast;

 while (my @day = splice @temps, 0, 2) {
 push @forecast, { max => $day[0],
		 min => $day[1] };
 }

 return bless \@forecast, $class;
}

1;

● You would probably want to make this array read-only

Tie::Array::UKWeather (cont)
sub TIEARRAY {
 my ($class, $city) = @_;

 croak "Unknown city $city" unless exists $city{lc $city};

 my $page = get "$url/$city{lc $city}";

 my @temps = $page =~ /(\d+)°C/g; # Please excuse quick hack!

 my @forecast;

 while (my @day = splice @temps, 0, 2) {
 push @forecast, { max => $day[0],
		 min => $day[1] };
 }

 return bless \@forecast, $class;
}

1;

● You would probably want to make this array read-only

● Find all the methods that change the array and make them
no-ops

More information

More information

● perldoc perltie

More information

● perldoc perltie

● perldoc -f tie

More information

● perldoc perltie

● perldoc -f tie

● perldoc -f tied

Overloading

What is overloading

What is overloading

● Most languages that support OO have a feature that they call
"overloading"

What is overloading

● Most languages that support OO have a feature that they call
"overloading"

● This is usually method overloading

What is overloading

● Most languages that support OO have a feature that they call
"overloading"

● This is usually method overloading

● Multiple methods with the same name but different prototypes

Java Example
public Fraction(integer num,
 integer den);
public Fraction(Fraction F);
public Fraction();

Java Example
public Fraction(integer num,
 integer den);
public Fraction(Fraction F);
public Fraction();

● Each method takes a different set of parameters, but they all
return a Fraction object

Java Example
public Fraction(integer num,
 integer den);
public Fraction(Fraction F);
public Fraction();

● Each method takes a different set of parameters, but they all
return a Fraction object

● In Perl this is trivial (we'll see an example later)

Operator overloading

Operator overloading

● In Perl we save the term "overloading" for something far more
interesting

Operator overloading

● In Perl we save the term "overloading" for something far more
interesting

● Operator overloading

What is operator overloading?

What is operator overloading?

● Imagine you have a class that models fractions
my $half
 = Number::Fraction->new(1, 2);
my $quarter
 = Number::Fraction->new(1, 4);
my $three_quarters = $half;
$three_quarters->add($quarter);

What is operator overloading?

● Imagine you have a class that models fractions
my $half
 = Number::Fraction->new(1, 2);
my $quarter
 = Number::Fraction->new(1, 4);
my $three_quarters = $half;
$three_quarters->add($quarter);

● Nasty isn't it

What is operator overloading?

● Imagine you have a class that models fractions
my $half
 = Number::Fraction->new(1, 2);
my $quarter
 = Number::Fraction->new(1, 4);
my $three_quarters = $half;
$three_quarters->add($quarter);

● Nasty isn't it

● Also error prone

What is operator overloading?

● Imagine you have a class that models fractions
my $half
 = Number::Fraction->new(1, 2);
my $quarter
 = Number::Fraction->new(1, 4);
my $three_quarters = $half;
$three_quarters->add($quarter);

● Nasty isn't it

● Also error prone

● Can you spot the bug?

A better way

A better way

● Wouldn't this be nicer?
my $half
 = Number::Fraction->new(1, 2);
my $quarter
 = Number::Fraction->new(1, 4);
my $three_quarters
 = $half + $quarter;

An even better way

An even better way

● Or even this
my $half = '1/2';
my $quarter = '1/4';
my $three_quarters
 = $half + $quarter;

An even better way

● Or even this
my $half = '1/2';
my $quarter = '1/4';
my $three_quarters
 = $half + $quarter;

● This is what operator overloading gives us

A Closer Look at Number::Fraction

A Closer Look at Number::Fraction

● The constructor is an example of method overloading

A Closer Look at Number::Fraction

● The constructor is an example of method overloading

● In Perl we only need one method
sub new {
 my $class = shift;
 my $self;
 if (@_ >= 2) {
 return if $_[0] =~ /\D/ or $_[1] =~ /\D/;
 $self->{num} = $_[0];
 $self->{den} = $_[1];
 } elsif (@_ == 1) {
 if (ref $_[0]) {
 if (UNIVERSAL::isa($_[0], $class) {
 return $class->new($_[0]->{num},
 $_[0]->{den});
 } else {
 croak "Can't make a $class from a ", ref $_[0];
 }
 } else {
 return unless $_[0] =~ m|^(\d+)/(\d+)|;

 $self->{num} = $1;
 $self->{den} = $2;
 }

Number::Fraction constructor (cont)
 } elsif (!@_) {
 $self->{num} = 0;
 $self->{den} = 1;
 }

 bless $self, $class;
 $self->normalise;
 return $self;
}

Using Number::Fraction
$half = Number::Fraction->new(1, 2);

$quarter = Number::Fraction->new('1/4');

$other_half = Number::Fraction::new($half);

$one = Number::Fraction->new;

Number::Fraction::add
sub add {
 my ($self, $delta) = @_;

 if (ref $delta) {
 if (UNIVERSAL::isa($delta, ref $self)) {
 $self->{num} = $self->{num} * $delta->{den}
 + $delta->{num} * $self->{den};
 $self->{den} = $self->{den} * $delta->{den};
 } else {
 croak "Can't add a ", ref $delta, " to a ", ref $self;
 }
 } else {
 if ($delta =~ m|(\d+)/(\d+)|) {
 $self->add(Number::Fraction->new($1, $2));
 } elsif ($delta !~ /\D/) {
 $self->add(Number::Fraction->new($delta, 1));
 } else {
 croak "Can't add $delta to a ", ref $self;
 }
 }
 $self->normalise;
}

Using overload.pm
use overload '+' => 'add';

Using overload.pm
use overload '+' => 'add';

● Allows you to write code like
$three_quarters = $half + $quarter;

Using overload.pm
use overload '+' => 'add';

● Allows you to write code like
$three_quarters = $half + $quarter;

● Or rather, it almost does

Using overload.pm
use overload '+' => 'add';

● Allows you to write code like
$three_quarters = $half + $quarter;

● Or rather, it almost does

● We need to do some work on add method first

The problem with add

The problem with add

● Our current implementation of add works on the current object

The problem with add

● Our current implementation of add works on the current object

● $x + $y is reordered to $x->add($y)

The problem with add

● Our current implementation of add works on the current object

● $x + $y is reordered to $x->add($y)

● $x is the current object

The problem with add

● Our current implementation of add works on the current object

● $x + $y is reordered to $x->add($y)

● $x is the current object

● In code like $z = $x + $y the value of $x shouldn't change

The problem with add

● Our current implementation of add works on the current object

● $x + $y is reordered to $x->add($y)

● $x is the current object

● In code like $z = $x + $y the value of $x shouldn't change

● Need to rewrite add so it returns a new object

Number::Fraction::add (version 2)
sub add {
 my ($l, $r) = @_;
 if (ref $r) {
 if (UNIVERSAL::isa($r, ref $l) {
 return
 Number::Fraction->new($l->{num} * $r->{den}
 + $r->{num} * $l->{den},
 $l->{den} * $r->{den})
 } else {
 ...
 }
 else {
 ...
 }
}

Other Problems

Other Problems

● Our object now handles code like
$half = $quarter + '1/4';

Other Problems

● Our object now handles code like
$half = $quarter + '1/4';

● But what about
$half = '1/4' + $quarter;

Other Problems

● Our object now handles code like
$half = $quarter + '1/4';

● But what about
$half = '1/4' + $quarter;

● Perl swaps the order of the operators and passes a flag telling
you that it has happened.

Reversed operands
sub add {
 my ($l, $r, $rev) = @_;
 ...
}

Reversed operands
sub add {
 my ($l, $r, $rev) = @_;
 ...
}

● This makes no difference for commutative operators (e.g. +
and *), but makes a difference for non-commutative operators
(e.g. - and /)

Overloadable operators

Overloadable operators

● Arithmetic: +, +=, -, -=, *, *=, /, /=, %, %=, **, **=, <<, <<=, >>,
>>=, x, x=, ., .=

Overloadable operators

● Arithmetic: +, +=, -, -=, *, *=, /, /=, %, %=, **, **=, <<, <<=, >>,
>>=, x, x=, ., .=

● Comparison: <, <=, >, >=, ==, !=, <=>, lt, le, gt, ge, eq, ne, cmp
Bit: &, ^, |, neg, !, ~

Overloadable operators

● Arithmetic: +, +=, -, -=, *, *=, /, /=, %, %=, **, **=, <<, <<=, >>,
>>=, x, x=, ., .=

● Comparison: <, <=, >, >=, ==, !=, <=>, lt, le, gt, ge, eq, ne, cmp
Bit: &, ^, |, neg, !, ~

● Increment/Decrement: ++, --

Overloadable operators

● Arithmetic: +, +=, -, -=, *, *=, /, /=, %, %=, **, **=, <<, <<=, >>,
>>=, x, x=, ., .=

● Comparison: <, <=, >, >=, ==, !=, <=>, lt, le, gt, ge, eq, ne, cmp
Bit: &, ^, |, neg, !, ~

● Increment/Decrement: ++, --

● ...and many others (see perldoc overload)

Magical Autogeneration

Magical Autogeneration

● That's a lot of operators!

Magical Autogeneration

● That's a lot of operators!

● You don't need to define all of these operations

Magical Autogeneration

● That's a lot of operators!

● You don't need to define all of these operations

● Perl can autogenerate many of them

Magical Autogeneration

● That's a lot of operators!

● You don't need to define all of these operations

● Perl can autogenerate many of them

● ++ can be derived from +

Magical Autogeneration

● That's a lot of operators!

● You don't need to define all of these operations

● Perl can autogenerate many of them

● ++ can be derived from +

● += can be derived from +

Magical Autogeneration

● That's a lot of operators!

● You don't need to define all of these operations

● Perl can autogenerate many of them

● ++ can be derived from +

● += can be derived from +

● - (unary) can be derived from - (binary)

Magical Autogeneration

● That's a lot of operators!

● You don't need to define all of these operations

● Perl can autogenerate many of them

● ++ can be derived from +

● += can be derived from +

● - (unary) can be derived from - (binary)

● All numeric comparisons can be derived from <=>

Magical Autogeneration

● That's a lot of operators!

● You don't need to define all of these operations

● Perl can autogenerate many of them

● ++ can be derived from +

● += can be derived from +

● - (unary) can be derived from - (binary)

● All numeric comparisons can be derived from <=>

● All string comparisons can be derived from cmp

Controlling Autogeneration

Controlling Autogeneration

● Two special "operators" give finer control over autogeneration

Controlling Autogeneration

● Two special "operators" give finer control over autogeneration
◆ nomethod - called if no other function defined

Controlling Autogeneration

● Two special "operators" give finer control over autogeneration
◆ nomethod - called if no other function defined
◆ fallback - controls what autogeneration does

use overload
 '-' => 'subtract',
 fallback => 0,
 nomethod => sub {
 croak "illegal operator $_[3]"
 };

Values for fallback

Values for fallback

● undef - autogenerate methods (die if method can't be
generated)

Values for fallback

● undef - autogenerate methods (die if method can't be
generated)

● 1 - autogenerate method (if method can't be generated revert
to standard Perl behaviour)

Values for fallback

● undef - autogenerate methods (die if method can't be
generated)

● 1 - autogenerate method (if method can't be generated revert
to standard Perl behaviour)

● 0 - don't autogenerate methods

Type Conversion

Type Conversion

● Three special operators allow for type conversions

Type Conversion

● Three special operators allow for type conversions

● q{""} converts to a string (you'll sometimes see this as "\"\"")

Type Conversion

● Three special operators allow for type conversions

● q{""} converts to a string (you'll sometimes see this as "\"\"")

● 0+ converts to a number

Type Conversion

● Three special operators allow for type conversions

● q{""} converts to a string (you'll sometimes see this as "\"\"")

● 0+ converts to a number

● bool converts to a boolean value

Type Conversion Example
use overload
 q{""} => 'to_string',
 '0+' => 'to_num';

sub to_string {
 my $self = shift;
 return "$_->{num}/$_->{den}";
}

sub to_num {
 my $self = shift;
 return $_{num}/$_->{den};
}
my $half =
 Number::Fraction->new(1, 2);

print $half; # prints 1/2

Type Conversion and fallback

Type Conversion and fallback

● Type conversion and fallback can be used together to prevent
you having to define any comparison operators

use overload
 '0+' => 'to_num',
 fallback => 1;

Type Conversion and fallback

● Type conversion and fallback can be used together to prevent
you having to define any comparison operators

use overload
 '0+' => 'to_num',
 fallback => 1;

● Now any use of numeric comparison operators will call to_num

Handling Constants

Handling Constants

● The last point at which we still need to refer to
Number::Fraction is when we create a fraction

Handling Constants

● The last point at which we still need to refer to
Number::Fraction is when we create a fraction

● We can avoid that too using overload::constant

my %_const_handlers =
 (q => sub {
 return __PACKAGE__->new($_[0]) || $_[1]
 });

sub import {
 overload::constant %_const_handlers
 if $_[1] eq ':constants';
}

sub unimport {
 overload::remove_constant(q => undef);
}

Defining Constant Handlers

Defining Constant Handlers

● Define a constant handler hash

Defining Constant Handlers

● Define a constant handler hash

● Keys are integer, float, binary, q or qr

Defining Constant Handlers

● Define a constant handler hash

● Keys are integer, float, binary, q or qr

● Values are subroutine references

Defining Constant Handlers

● Define a constant handler hash

● Keys are integer, float, binary, q or qr

● Values are subroutine references

● Subroutine is passed three arguments

Defining Constant Handlers

● Define a constant handler hash

● Keys are integer, float, binary, q or qr

● Values are subroutine references

● Subroutine is passed three arguments
◆ Original string representation of constant

Defining Constant Handlers

● Define a constant handler hash

● Keys are integer, float, binary, q or qr

● Values are subroutine references

● Subroutine is passed three arguments
◆ Original string representation of constant
◆ How Perl wants to interpret the constant

Defining Constant Handlers

● Define a constant handler hash

● Keys are integer, float, binary, q or qr

● Values are subroutine references

● Subroutine is passed three arguments
◆ Original string representation of constant
◆ How Perl wants to interpret the constant
◆ (for q and qr) Describes how string is being used (q, qq, tr, s)

Defining Constant Handlers

● Define a constant handler hash

● Keys are integer, float, binary, q or qr

● Values are subroutine references

● Subroutine is passed three arguments
◆ Original string representation of constant
◆ How Perl wants to interpret the constant
◆ (for q and qr) Describes how string is being used (q, qq, tr, s)

● Install during import subroutine

Using Constant Handlers
use Number::Fraction ':constants';

my $half = '1/2';
print ref $half; # prints Number::Fraction

my $x = '1/4' + '1/3';
print $x; # prints 7/12

$x += '1/12';
print $x; # prints 2/3

More information

More information

● perldoc overload

Any Questions?

	Title
	What We Will Cover
	Why tie or overload?
	Tieing objects
	What you can tie
	Using tie
	The clever stuff
	The clever stuff (cont)
	A simple tied scalar
	Testing Tie::Scalar::Countdown
	Tieing other variable types
	Making life easier for yourself
	Tie::Std::Hash example
	Tie::Scalar::Countdown (version 2)
	Tie::StdHash Example - Tie::Hash::FixedKeys
	Tie::Hash::FixedKeys (cont)
	Tie::Hash::FixedKeys (cont)
	Another example
	Making life easier for your users
	Using Attribute::Handlers
	Another example - External data
	Tie::Array::UKWeather
	Tie::Array::UKWeather (cont)
	More information

	Overloading
	What is overloading
	Java Example
	Operator overloading
	What is operator overloading?
	A better way
	An even better way
	A Closer Look at Number::Fraction
	Number::Fraction constructor (cont)
	Using Number::Fraction

	Number::Fraction::add
	Using overload.pm
	The problem with add
	Number::Fraction::add (version 2)
	Other Problems
	Reversed operands
	Overloadable operators
	Magical Autogeneration
	Controlling Autogeneration
	Values for fallback
	Type Conversion
	Type Conversion Example
	Type Conversion and fallback
	Handling Constants
	Defining Constant Handlers
	Using Constant Handlers
	More information
	Any Questions?

