
Perl in The Enterprise

Dave Cross
dave@mag-sol.com

Magnum Solutions Ltd
http://mag-sol.com/

What We Will Cover

● What is Enterprise Computing?
● Why Perl is good in the Enterprise
● Why Perl is bad in the Enterprise
● The Perl Foundation
● What is coming with Perl 6

What is Enterprise
Computing?

● Lets ask Google
● define:"enterprise computing"
● “A vague term used generally to refer to

networks and other computing needs
implemented throughout a large, often
widely dispersed corporation. Microsoft
and IBM, for example, are enterprises; a
small business is not.”

● www.microsoft.com

Enterprise Computing

● Large scale hardware and software
implementations

● Interfaces to other systems
● High availability
● Many developers working simultaneously
● Long lifespan
● High visibility

Why Perl is Good in the
Enterprise

● Who uses it?
● Why do they use it?
● Web Application examples

Who Uses Perl?

● Everyone
● No really
● Well, almost everyone
● Even Microsoft shops
● Banks see it as a “competitive advantage”
● People regularly build and deploy

applications containing 10,000s lines of
Perl code

Why Do They Use It?

● Very High Level
● Dynamic Language
● Ready Written Modules
● Quality Assurance
● Multiple Programming Paradigms

Very High Level Language

● Typically one line of Perl to ten lines of C
● Number of bugs is proportional to lines

of code
● Much code in off the shelf modules

Dynamic Language

● Code is data
● Like Python and Ruby
● Unlike Java, C and C#
● Programs that write programs

– Are the happiest programs of all

Ready Written Modules

● Perl has a culture of sharing code
● Comprehensive Perl Archive Network
● http://search.cpan.org/
● Thousands of pre-built modules
● Standard installation and testing

procedures
● Plug and Play Programming

Quality Assurance

● Very powerful testing framework
● Encourages module authors to include

test suites with their code
● Lots of work in this area over the last five

years
● “Perl Testing: A Developers Notebook”
● CPAN Testers

– http://testers.cpan.org/
● CPAN Ratings

– Like Amazon ratings
– http://cpanratings.perl.org/

Quality Assurance

● Perl QA works on two levels
● Makes it easy for module authors to

write test plans
– Code you bring in from CPAN is well tested

● Makes it easy for your developers to
write test plans
– Smoke testing
– Test first development

Multiple Programming
Paradigms

● Procedural Programming
● Object Oriented Programming
● Functional Programming

– “Higher Order Perl”
● Other, more esoteric, paradigms too
● Pick whatever is best for your application

Web Application Examples

● Everyone is talking about Ruby on Rails
● Example of an MVC framework
● Many MVC frameworks on the CPAN
● Or build your own from components

MVC Components

● Model
– Class::DBI (object-relational mapper)
– Also Tangram, DBIx::Class, Class::Persist

● View
– Template Toolkit
– Also Mason, HTML::Template

● Controller
– Your code goes here

● Complete Frameworks
– Maypole
– Catalyst

Why Perl is Bad in the
Enterprise

● It’s all a matter of perception
● Seen as a “hackers” language

– Bad CGI programs
– Two audiences

● Enterprise vs Hackers
● Open Source vs Free Software

● TMTOWTDI
– There’s More Than One Way To Do It
– Everyone has their own favourite
– Coding standards and code reviews
– “Perl Best Practices”

The Perl Foundation

● http://foundation.perl.org/
● “dedicated to the advancement of the

Perl programming language through
open discussion, collaboration, design,
and code.”

● Co-ordinates the efforts of a number of
grass-roots Perl groups
– Perl Mongers
– perl.org
– Perl Monks
– YAPC

The Perl Foundation

● Holding a number of “Perl Days”
● Meeting large companies to discuss what

they need from Perl
● Meeting in London August 2005
● Setting up an “Enterprise Perl Working

Group”
– Recommended modules
– Pre-built libraries
– Certification

Perl 6

● "Perl 5 was my rewrite of Perl. I want
Perl 6 to be the community's rewrite of
Perl and of the community."
– Larry Wall

Perl 6 History

● 18th July 2000, OSCON
– Perl 5 Porters meeting
– Jon Orwant
– Major change needed

● 19th July 2000, OSCON
– Larry Wall’s “State of the Onion“
– Announces development of Perl 6

● It’s been a long time coming

Perl 6 Design

● Massive RFC Process
● Canvassing ideas from community
● 361 RFCs received
● http://dev.perl.org/perl6/rfc/
● Larry (with help from others) merges

RFCs with his ideas
● Much discussion on mailing lists
● Designs published as a series of

Apocalyses and Exegeses
– http://dev.perl.org/perl6/

Perl 6 Features

● Many new features
– explicit strong typing
– proper parameter lists
– active metadata on values, variables,

subroutines, and types
– declarative classes with strong encapsulation
– full OO exception handling
– support for the concurrent use of multiple

versions of a module
– extensive introspection facilities
– LL and LR grammars (including a built-in

grammar for Perl 6 itself)

Perl 6 Features

● More new features
– subroutine overloading
– multiple dispatch
– named arguments
– a built-in switch statement
– hierarchical construction and destruction
– distributive method dispatch
– method delegation
– named regexes
– overlapping and exhaustive regex matches

within a string
– named captures

Perl 6 Features

● Yet more new features
– parse-tree pruning
– incremental regex matching against input

streams
– macros (that are implemented in Perl itself)
– user-definable operators (from the full

Unicode set)
– chained comparisons
– a universally accessible aliasing mechanism
– lexical exporting (via a cleaner, declarative

syntax)
– multimorphic equality tests

Perl 6 Features

● A few more new features
– state variables
– hypothetical variables
– hyperoperators (i.e. vector processing)
– function currying
– junctions (i.e. superpositional values,

subroutines, and types)
– coroutines

Perl 6 Related Projects

● Parrot
● PONIE
● Pugs

Parrot

● Virtual machine used to efficiently
execute bytecode for dynamic languages

● Core of the Perl 6 compiler
● Target platform for Perl 6
● Other languages will be able to target

Parrot too
● Use libraries from other Parrot languages
● http://www.parrotcode.org/

PONIE

● Perl On New Internal Engine
● Perl 5 implemented on top of Parrot
● Implementing a real language in Parrot
● A real test that Parrot is up to the job
● http://www.poniecode.org/

Pugs

● Prototype Perl 6 compiler
● Written in Haskell
● Good way to try out Perl 6 now
● Limited but getting better very quickly
● http://pugscode.org/

Conclusion

● Perl is currently very suitable as an
Enterprise level language

● Many large companies rely on Perl to
drive their business

● Perl 6 will be even better

Questions

● Any questions?
– Except “when will Perl 6 be out?”

